Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Journal of Zhejiang University. Science. B ; (12): 21-30, 2021.
Article in English | WPRIM | ID: wpr-880705

ABSTRACT

Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).


Subject(s)
Humans , ADP-Ribosylation , COVID-19/metabolism , DNA Repair/physiology , Evolution, Molecular , Models, Biological , Models, Molecular , N-Glycosyl Hydrolases/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Protein Domains , SARS-CoV-2/pathogenicity
2.
Asian Journal of Andrology ; (6): 572-579, 2021.
Article in English | WPRIM | ID: wpr-922376

ABSTRACT

Programmed DNA double-strand breaks (DSBs) are necessary for meiosis in mammals. A sufficient number of DSBs ensure the normal pairing/synapsis of homologous chromosomes. Abnormal DSB repair undermines meiosis, leading to sterility in mammals. The DSBs that initiate recombination are repaired as crossovers and noncrossovers, and crossovers are required for correct chromosome separation. Thus, the placement, timing, and frequency of crossover formation must be tightly controlled. Importantly, mutations in many genes related to the formation and repair of DSB result in infertility in humans. These mutations cause nonobstructive azoospermia in men, premature ovarian insufficiency and ovarian dysgenesis in women. Here, we have illustrated the formation and repair of DSB in mammals, summarized major factors influencing the formation of DSB and the theories of crossover regulation.


Subject(s)
Animals , Humans , Chromosome Segregation , DNA Breaks, Double-Stranded , DNA Repair/physiology , Mammals/genetics
3.
Rev. cuba. pediatr ; 86(2): 134-146, abr.-jun. 2014. ilus
Article in Spanish | LILACS | ID: lil-721312

ABSTRACT

INTRODUCCIÓN: deficiencias en los mecanismos de reparación del ácido desoxirribonucleico constituyen un factor de riesgo para el desarrollo del cáncer, como ocurre en el xeroderma pigmentoso. OBJETIVOS: evaluar el fenotipo de la reparación por escisión de nucleótidos en pacientes cubanos con una elevada hipersensibilidad al sol, y la sospecha clínica de xeroderma pigmentoso en la fase eritematopigmentaria, mediante la variante alcalina del ensayo cometa. MÉTODOS: se estudiaron 28 pacientes, con predominio de las edades pediátricas. Como inductor del daño al ácido desoxirribonucleico se utilizó la radiación ultravioleta C (254 nm) a una dosis de 40 J/m². El daño del ácido desoxirribonucleico se cuantificó inmediatamente, después de irradiar las células (tiempo 0 minutos) y un tiempo después de la irradiación, incubado a 37 ºC en medio de cultivo, enriquecido con suero fetal al 10 % (tiempo 45 min). Con estos datos se determinó el por ciento de la diferencia en las unidades arbitrarias (UA) entre ambos momentos. RESULTADOS: no se obtuvieron diferencias significativas (p= 0,080976) entre el grupo de pacientes (224,23 UA) y el grupo de sujetos controles (195,43 UA). Los pacientes reconocieron y escindieron el daño inducido en el ácido desoxirribonucleico por luz ultravioleta C, con una eficiencia similar a la de los controles. CONCLUSIONES: el ensayo cometa alcalino acoplado a radiación ultravioleta C permitió identificar, claramente y de forma indirecta, el funcionamiento de los mecanismos de reparación por escisión de nucleótidos, donde actúan las proteínas XPA a XPG. Los sujetos en estudio fueron excluidos de presentar la forma clásica de la enfermedad.


INTRODUCTION: deficiencies in the deoxyribonucleic acid repair mechanisms are a risk factor for cancer as is the case of xeroderma pigmentosum. OBJECTIVES: to evaluate the phenotype of nucleotide excision repair in Cuban sun hypersensitive patients with clinical suspicion of xeroderma pigmentosum at erythematopigmentary phase, by using the Comet assay alkaline variant. METHODS: twenty eight patients mainly at pediatric ages were studied. The used DNA damage inducer was ultraviolet radiation C (254 nm) at 40 J/m2 dose. The DNA damage was quantified immediately after cell irradiation (0 minutes) and some time afterwards, then cultured at 37 ºC and enriched with 10 % fetal serum (45 minutes). This data allowed determining the percentage of difference in arbitrary units (AU) between both moments. RESULTS: there was no significant differences (p= 0.080976) between the group of patients (224.23 AU) and the control group (195.43 UA). The UV-C induced DNA damage was recognized and excised in the patients with similar effectiveness to that of the controls. CONCLUSIONS: the UV-C radiation-coupled alkaline comet assay allowed clearly and indirectly identifying the functioning of the nucleotide excision repair mechanisms in which XPA to XPG proteins influence. The studied subjects did not show the classical form of this disease.


Subject(s)
Humans , Sunlight/adverse effects , Ultraviolet Therapy/methods , DNA , DNA Repair/physiology , DNA Repair-Deficiency Disorders/prevention & control , Hypersensitivity/diagnosis
4.
Biol. Res ; 41(2): 217-225, 2008. graf
Article in English | LILACS | ID: lil-495756

ABSTRACT

DNA damage repair was assessed in quiescent (G0) leukocytes and in hepatocytes of mice, after 1 and 2 hours recovery from a single whole body y-irradiation with 0.5, 1 or 2 Gy. Evaluation of single-strand breaks (SSB) and alkali-labile sites together were carried out by a single-cell electrophoresis at pH>13.0 (alkaline comet assay). In non-irradiated (control) mice, the constitutive, endogenous DNA damage (basal) was around 1.5 times higher in leukocytes than in hepatocytes. Irradiation immediately increased SSB frequency in both cell types, in a dose-dependent manner. Two sequential phases took place during the in vivo repair of the radio-induced DNA lesions. The earliest one, present in both hepatocytes and leukocytes, further increased the SSB frequency, making evident the processing of some primary lesions in DNA bases into the SSB repair intermediates. In a second phase, SSB frequency decreased because of their removal. In hepatocytes, such a frequency regressed to the constitutive basal level after 2 hours recovery from either 0.5 orí Gy. On the other hand, the SSB repair phase was specifically abrogated in leukocytes, at the doses and recovery times analyzed. Thus, the efficiency of in vivo repair of radio-induced DNA damage in dormant cells (lymphocytes) is quite different from that in hepatocytes whose low proliferation activity accounts only for cell renewal.


Subject(s)
Animals , Female , Mice , DNA Damage , DNA Repair/physiology , Gamma Rays , Hepatocytes/radiation effects , Leukocytes/radiation effects , Whole-Body Irradiation , Comet Assay
5.
Article in English | IMSEAR | ID: sea-124980

ABSTRACT

Pancreatic cancer is a deadly disease with no effective therapy short of surgical resection. Unfortunately, only a minority of patients are candidates for potential curative surgery as the tumor spreads early to extrapancreatic sites. Patients with metastatic pancreatic cancer survive less than 1 year following diagnosis. The current challenge for both clinicians and scientists is to translate the growing body of knowledge of the molecular basis of this disease into effective strategies for early diagnosis and systematic treatment. Molecular studies of pancreatic cancer have revealed that this cancer is associated with several genetic mutations. Although our knowledge of the molecular alterations in pancreatic cancer has grown significantly, there is still much to learn. It is clear that oncogenes, tumor suppressor genes, growth factors and DNA mismatch repair genes all play a role in pancreatic tumorigenesis. However, a better understanding of the relative contribution of each of these molecular alterations is necessary and will aid the development of more effective diagnostic and therapeutic strategies to deal with this deadly and aggressive cancer.


Subject(s)
Cyclooxygenase 2/physiology , DNA Repair/physiology , Genes, Tumor Suppressor/physiology , Humans , Oncogenes/physiology , Pancreatic Neoplasms/genetics
6.
Genet. mol. res. (Online) ; 4(2): 232-250, 30 jun. 2005. ilus
Article in English | LILACS | ID: lil-445289

ABSTRACT

DNA replication, together with repair mechanisms and cell cycle control, are the most important cellular processes necessary to maintain correct transfer of genetic information to the progeny. These processes are well conserved throughout the Eukarya, and the genes that are involved provide essential information for understanding the life cycle of an organism. We used computational tools for data mining of genes involved in these processes in the pathogenic fungus Paracoccidiodes brasiliensis. Data derived from transcriptome analysis revealed that the cell cycle of this fungus, as well as DNA replication and repair, and the recombination machineries, are highly similar to those of the yeast Saccharomyces cerevisiae. Among orthologs detected in both species, there are genes related to cytoskeleton structure and assembly, chromosome segregation, and cell cycle control genes. We identified at least one representative gene from each step of the initiation of DNA replication. Major players in the process of DNA damage and repair were also identified.


Subject(s)
Humans , Cell Cycle/genetics , DNA, Fungal/genetics , Paracoccidioides/genetics , Recombination, Genetic/genetics , DNA Repair/genetics , DNA Replication/genetics , Cell Cycle/physiology , Genes, Fungal/genetics , Mutation/genetics , Paracoccidioides/cytology , Recombination, Genetic/physiology , DNA Repair/physiology , DNA Replication/physiology , Transcription, Genetic/genetics
7.
Braz. j. med. biol. res ; 38(3): 321-334, mar. 2005. ilus, tab
Article in English | LILACS | ID: lil-394802

ABSTRACT

DNA double-strand breaks (DSBs) represent a major threat to the genomic stability of eukaryotic cells. DNA repair mechanisms such as non-homologous end joining (NHEJ) are responsible for the maintenance of eukaryotic genomes. Dysfunction of one or more of the many protein complexes that function in NHEJ can lead to sensitivity to DNA damaging agents, apoptosis, genomic instability, and severe combined immunodeficiency. One protein, Pso2p, was shown to participate in the repair of DSBs induced by DNA inter-strand cross-linking (ICL) agents such as cisplatin, nitrogen mustard or photo-activated bi-functional psoralens. The molecular function of Pso2p in DNA repair is unknown, but yeast and mammalian cell line mutants for PSO2 show the same cellular responses as strains with defects in NHEJ, e.g., sensitivity to ICLs and apoptosis. The Pso2p human homologue Artemis participates in V(D)J recombination. Mutations in Artemis induce a variety of immunological deficiencies, a predisposition to lymphomas, and an increase in chromosomal aberrations. In order to better understand the role of Pso2p in the repair of DSBs generated as repair intermediates of ICLs, an in silico approach was used to characterize the catalytic domain of Pso2p, which led to identification of novel Pso2p homologues in other organisms. Moreover, we found the catalytic core of Pso2p fused to different domains. In plants, a specific ATP-dependent DNA ligase I contains the catalytic core of Pso2p, constituting a new DNA ligase family, which was named LIG6. The possible functions of Pso2p/Artemis/Lig6p in NHEJ and V(D)J recombination and in other cellular metabolic reactions are discussed.


Subject(s)
Animals , Humans , DNA Repair/physiology , DNA-Binding Proteins/physiology , Endodeoxyribonucleases/physiology , Eukaryotic Cells/chemistry , Genomic Instability , Nuclear Proteins/physiology , Saccharomyces cerevisiae Proteins/physiology , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Nuclear Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics
8.
Experimental & Molecular Medicine ; : 505-509, 2004.
Article in English | WPRIM | ID: wpr-13642

ABSTRACT

The p53 tumor suppressor has long been envisaged to preserve genetic stability by the induction of cell cycle checkpoints and apoptosis. More recently, p53 has been implicated to play roles in DNA repair responses to genotoxic stresses. UV-damage and the damage caused by certain chemotherapeutics including cisplatin and nitrogen mustards are known to be repaired by the nucleotide excision repair (NER) pathway which is reportedly regulated by p53 and its downstream genes. There are evidences to suggest that the base excision repair (BER) induced by the base-damaging agent methyl methanesulfonate (MMS) is partially deficient in cells lacking functional p53. This result suggests that the activity of BER might be also dependent on the p53 status. In this review, we discuss the possibilities that p53 regulates BER as well as NER; these are one of the most significant potentials of p53 tumor suppressor for repairing the vast majority of DNA damages that is incurred from various environmental stresses.


Subject(s)
Animals , Humans , Mice , Antineoplastic Agents/pharmacology , DNA/drug effects , DNA Damage , DNA Repair/physiology , Tumor Suppressor Protein p53/physiology
9.
Indian J Physiol Pharmacol ; 1998 Oct; 42(4): 440-52
Article in English | IMSEAR | ID: sea-108616

ABSTRACT

Reactive oxygen species (ROS) such as the superoxide anion radical (O2.-) hydrogen peroxide (H2O2) and hydroxyl radical (.OH) have been implicated in the pathophysiology of various states, including ischemia reperfusion injury, haemorrhagic shock, atherosclerosis, heart failure, acute hypertension and cancer. The free radicals, nitric oxide (NO) and O2.- react to form peroxynitrite (ONOO-), a potent cytotoxic oxidant. A potential mechanism of oxidative damage is the nitration of tyrosine residues of protein, peroxidation of lipids, degradation of DNA and oligonucleosomal fragments. Several mechanisms are responsible for the protection of the cells from potential cytotoxic damage caused by free radicals. Cells have developed various enzymatic and nonenzymatic defense systems to control excited oxygen species, however, a certain fraction escapes the cellular defense and may cause permanent or transient damage to nucleic acids within the cells, leading to such events as DNA strand breakage and disruption of Ca2+ metabolism. There is currently great interest in the possible role of ROS in causing DNA damage that leads to cancer and spontaneous mutations. A high rate of oxidative damage to mammalian DNA has been demonstrated by measuring oxidized DNA bases excreted in urine after DNA repair. The rate of oxidative DNA damage is directly related to the metabolic rate and inversely related to life span of the organism.


Subject(s)
Animals , DNA Damage/physiology , DNA Repair/physiology , Humans , Oxidative Stress/physiology , Reactive Oxygen Species/physiology
10.
Journal of Korean Medical Science ; : 137-143, 1990.
Article in English | WPRIM | ID: wpr-87931

ABSTRACT

An experiment was designed to investigate the reaction mechanism of AP (apurinic or apyrimidinic) DNA endonucleases (APcI, APcII, APcIII) purified from rat liver chromatin. Sulfhydryl compounds (2-mercaptoethanol, dithiothreitol) brought about optimal activities of AP DNA endonucleases and N-ethylmaleimide or HgCl2 inhibited the enzyme activities, indicating the presence of sulfhydryl group at or near the active sites of the enzymes. Mg2+ was essential and 4mM of Mg2+ was sufficient for the optimal activities of AP DNA endonucleases. Km values of APcI, APcII and APcIII for the substrate (E. coli chromosomal AP DNA) were 0.53, 0.27 and 0.36 microM AP sites, respectively. AMP was the most potent inhibitor among adenine nucleotides tested and the inhibition was uncompetitive with respective to the substrate. The Ki values of APcI, APcII and APcIII were 0.35, 0.54 and 0.41mM, respectively. The degree of nick translation of AP DNAs nicked by APcI, APcII and APcIII with Klenow fragment in the presence and absence of T4 polynucleotide kinase or alkaline phosphatase were the same, suggesting that all 3 AP DNA endonucleases excise the phosphodiester bond of AP DNA strand to release 3-hydroxyl nucleotides and 5-phosphomonoester nucleotides.


Subject(s)
Animals , Rats , Binding Sites , Chromatin/enzymology , DNA Damage/physiology , DNA Repair/physiology , DNA-(Apurinic or Apyrimidinic Site) Lyase , Deoxyribonuclease IV (Phage T4-Induced) , Endodeoxyribonucleases/antagonists & inhibitors , Kinetics , Liver/drug effects , Magnesium/pharmacology , Sulfhydryl Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL